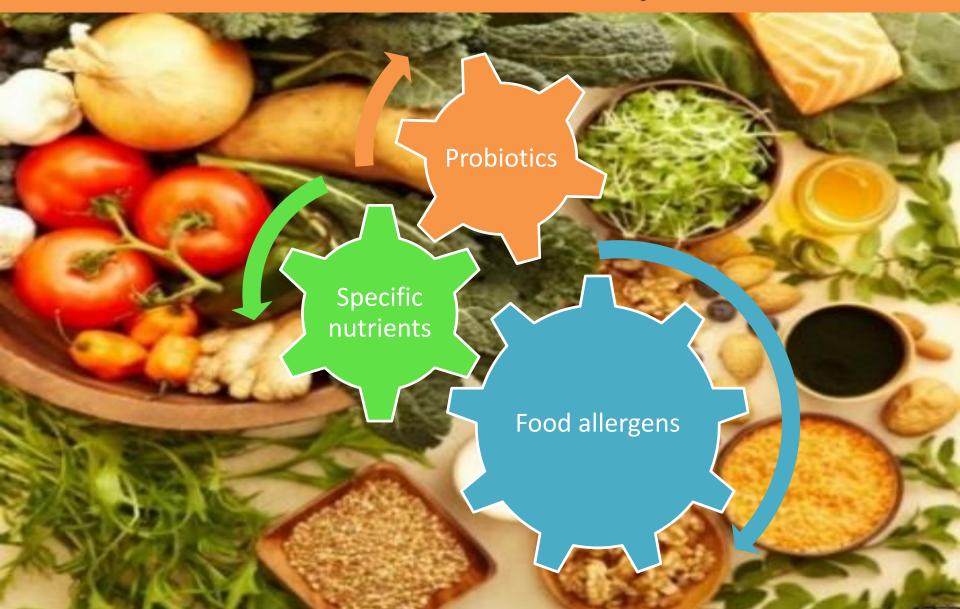

Effects of maternal and infant diets on allergic disease development outcomes

Dr Debbie Palmer (BSc BND PhD) Childhood Allergy and Immunology Research (CAIR) Telethon Kids Institute, University of Western Australia, Perth, WA, Australia

The critical window in allergy prevention



First 1000 days (conception to 2 years of age) is thought to be a particular critical period for allergy prevention

Maternal and infant diets play a likely role in infant immune development

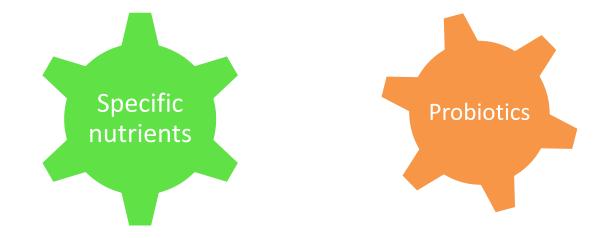
Maternal and infant diets play a likely role in infant immune development

Possible "protective" specific nutrients for allergy prevention

- Omega-3 polyunsaturated fatty acids (n-3 PUFA)
- Antioxidant vitamins (A, E and C)
- Vitamin D
- Prebiotics

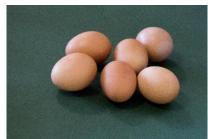
Immunomodulatory effects

Observational study associations with reduced risk of allergic disease



RESEARCH ARTICLE

Diet during pregnancy and infancy and risk of allergic or autoimmune disease: A systematic review and meta-analysis


Vanessa Garcia-Larsen^{1,2‡}, Despo lerodiakonou^{2,3‡}, Katharine Jarrold³, Sergio Cunha², Jennifer Chivinge³, Zoe Robinson³, Natalie Geoghegan³, Alisha Ruparelia³, Pooja Devani³, Marialena Trivella⁴, Jo Leonardi-Bee⁵, Robert J. Boyle^{3,6}*

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002507 February 28, 2018

Possible "protective" specific nutrients for allergy prevention

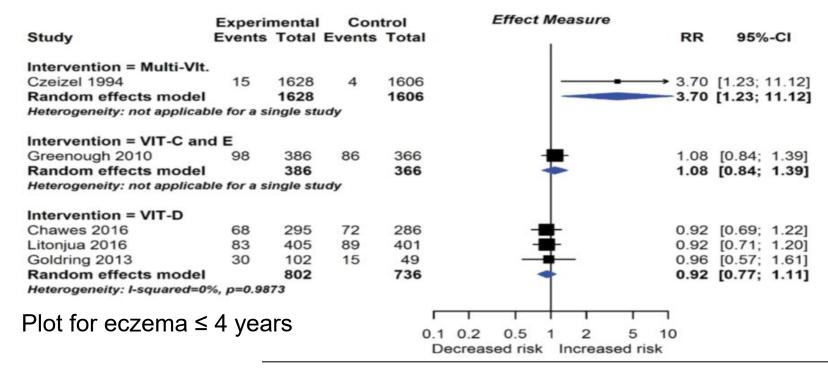
- Omega-3 polyunsaturated fatty acids (n-3 PUFA):
 Six trials suggest that fish oil supplementation
 during pregnancy and lactation
- ✓ may reduce risk of allergic sensitisation to egg (RR 0.69, 95% CI 0.53–0.90; Absolute Risk Reduction 31 cases per 1,000) with supplementation during pregnancy more effective (4 RCT: RR 0.55 95% CI 0.40–0.76) than during lactation (2 RCT: RR 0.92 95% CI 0.65–1.28).

Possible "protective" specific nutrients for allergy prevention

- Omega-3 polyunsaturated fatty acids (n-3 PUFA):
 Six trials suggest that fish oil supplementation
 during pregnancy and lactation
- ✓ may reduce risk of allergic sensitisation to peanut with supplementation during pregnancy more effective (2 RCT: RR 0.62 95% CI 0.40–0.96).
- There were no significant associations with any other allergic outcomes.

Possible "protective" specific nutrients for allergy prevention

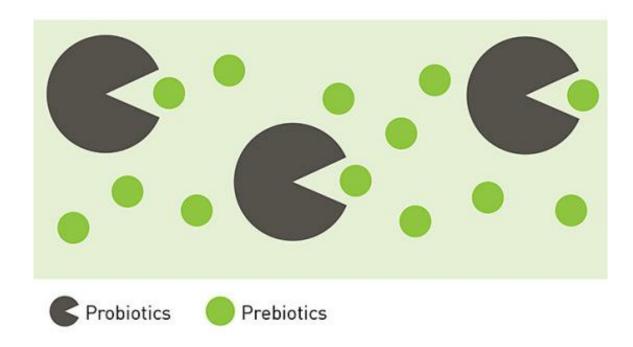
Antioxidant vitamins (A,E and C) & Vitamin D: no beneficial effects on recurrent wheeze


	Experin	mental	Con	trol	Effect Measure		
Study	Events	Total	Events	Total		RR	95%-CI
Intervention = Multi-Vit.	St						
Czeizel 1994	4	1628	1	1606		 3.95 	[0.44; 35.27
Random effects model		1628		1606		0.95	10.44; 35.27
Heterogeneity: not applicat	de for a si	ingle st	udy				
Intervention = VIT-C an	dE						
Greenough 2010	15	386	17	366		0.84	[0.42; 1.65
Random effects model		386		366		0.84	[0.42; 1.65
Heterogeneity: not applicat	Ne for a si	ingle st	wdy				
Intervention = VIT-D							
Chawes 2016	47	295	57	286		0.80	10.56; 1.13
Grant 2016	3	156	9	80	*	0.17	[0.05; 0.61
Litonjua 2016	98	405	120	401	-	0.81	[0.64; 1.02
Goldring 2013	17	108	7	50		1.12	52 CO. 0 CO. 0 CO. 0 CO.
Random effects model		964	- 11 - I	817	-	0.76	
Heterogeneity: I-squared=8	2.3%, p=0	.0983		2220			
						٦.	
Plot for recur	cont			(0.1 0.2 0.5 1 2 5	10	
гологесон	enn				Decreased risk Increased risk	1	

wheeze ≤ 4 years

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002507 February 28, 2018

Possible "protective" specific nutrients for allergy prevention


Antioxidant vitamins (A,E and C) & Vitamin D: no beneficial effects on eczema outcomes

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002507 February 28, 2018

Possible "protective" specific nutrients for allergy prevention

• **Prebiotics:** soluble fermentable fibre (oligosaccharides), food for gut bacteria

Post-natal prebiotic infant supplementation

Nine studies involved comparison of an **infant formula milk with versus without prebiotic**. Meta-analysis showed no clear evidence that prebiotic supplementation reduces eczema at age 4 years (7 studies; RR 0.75; 95% CI 0.56–1.01)

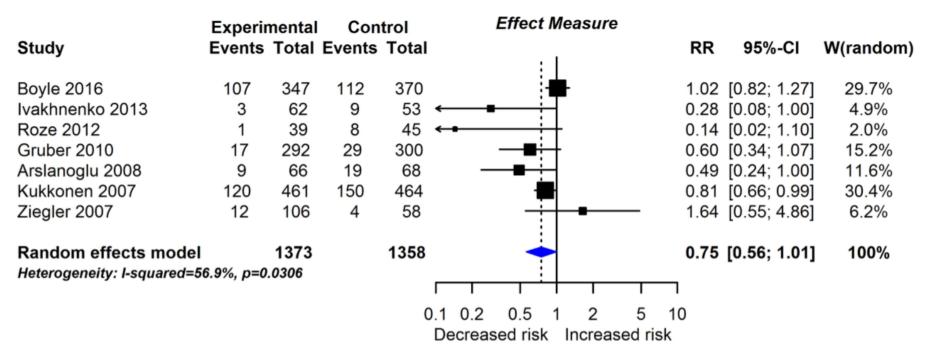
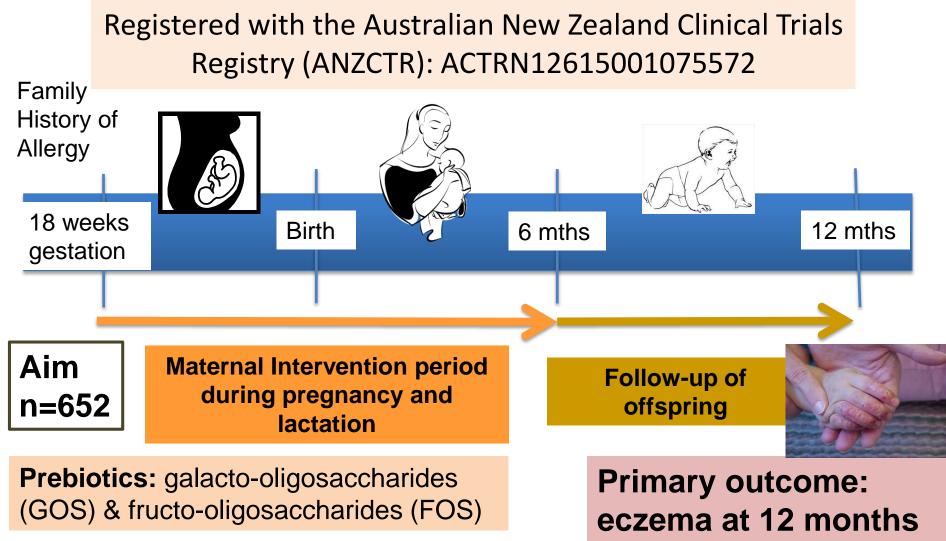



Fig 6. RCT findings for prebiotic supplementation compared with no prebiotics and risk of eczema at age \leq 4 years. CI, confidence interval; RCT, randomised controlled trial; RR, risk ratio; W, weight.

Maternal prebiotic supplementation (The SYMBA Study): current RCT

NHMRC Project Grant ID: 1099480

Meta-analysis showed an association between probiotic supplementation and:

✓ reduced eczema (19 studies; RR 0.78; 95% CI 0.68–0.90)

Subgroup analysis for eczema showed a significant difference between

- supplementing mothers during the postnatal period (9 interventions, RR 0.64; 95% CI 0.51–0.80)
- studies that just supplemented infants during the postnatal period (11 interventions, RR 0.93; 95% CI 0.81–1.06)

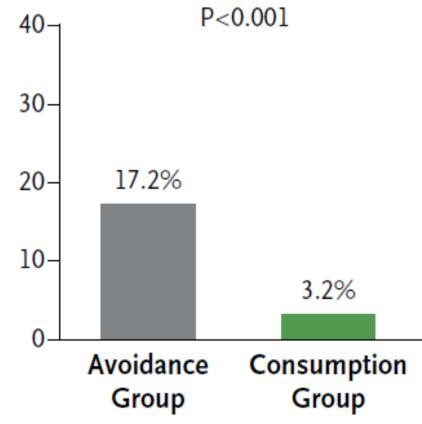
Maternal and infant diets play a likely role in infant immune development

Trials investigating when to introduce 'more allergenic' foods into infant diets.

LEAP Trial: UK (n=640) Du Toit et al, N Engl J Med 2015

EAT Trial: UK (n=1303) cow's milk, egg, fish, wheat, sesame and peanut Perkin et al, N Engl J Med 2016

HEAP Trial: Germany (n=383) Bellach *et al*, J Allergy Clin Immunol 2017 STEP Trial: Australia (n=820) Palmer *et al*, J Allergy Clin Immunol 2017


STAR Trial: Australia (n=86) Palmer *et al*, J Allergy Clin Immunol 2013

BEAT Trial: Australia (n=319) Tan *et al*, J Allergy Clin Immunol 2017

PETIT Trial: Japan (n=147) Natsume *et al*, Lancet 2017

LEAP (Learning Early About Peanut Allergy) Study

Both Cohorts (N=628)

The regular consumption at least 3 times per week of peanut protein between 1 to 5 years of age significantly decreased the frequency of the development of peanut allergy among children at high risk for peanut allergy

George Du Toit et al, N Engl J Med 2015

LEAP (Learning Early About Peanut Allergy) Study

 Infants who were sensitised to peanut (SPT >4mm) = 9% infants screened were never included in the LEAP Study and were advised to avoid peanut

• Unknown effect if these infants were included in the LEAP RCT

?

George Du Toit et al, N Engl J Med 2015

Timing of Allergenic Food Introduction to the Infant Diet and Risk of Allergic or Autoimmune Disease A Systematic Review and Meta-analysis JAMA 2016;316(11):1181-1192

	Early		Late					
Outcome	No. of Events	Total No.			Risk Ratio (95% CI)	Decreased Risk of Food Allergy		Weight (random- effects model), %
Egg allergy								
Perkin et al, ⁶ 2016	21	569	32	596	0.69 (0.40-1.18)		—	30.9
Natsume et al, ¹⁷ 2016	5	60	23	61	0.22 (0.09-0.54)	←-		16.7
Tan et al, ¹⁸ 2016	8	130	13	124	0.59 (0.25-1.37)			18.2
Bellach et al, ¹⁶ 2015	2	142	1	156	2.20 (0.20-23.97)		 >	3.1
Palmer et al, ¹⁵ 2013	14	42	18	35	0.65 (0.38-1.11)		-	31.1
Random-effects model Heterogeneity: I ² = 35.8%; P= .18		943		972	0.56 (0.36-0.87)	\diamond		100.0

5 trials (1915 participants) that early egg introduction at 4 to 6 months was associated with reduced egg allergy (risk ratio 0.56; 95%CI 0.36-0.87; P = 0.009).

STEP Trial (Palmer et al. J Allergy Clin Immunol 2017) with n=820 infants is not included: RR 0.75; 95% CI 0.48-1.17; *P*=0.20

STEP Trial

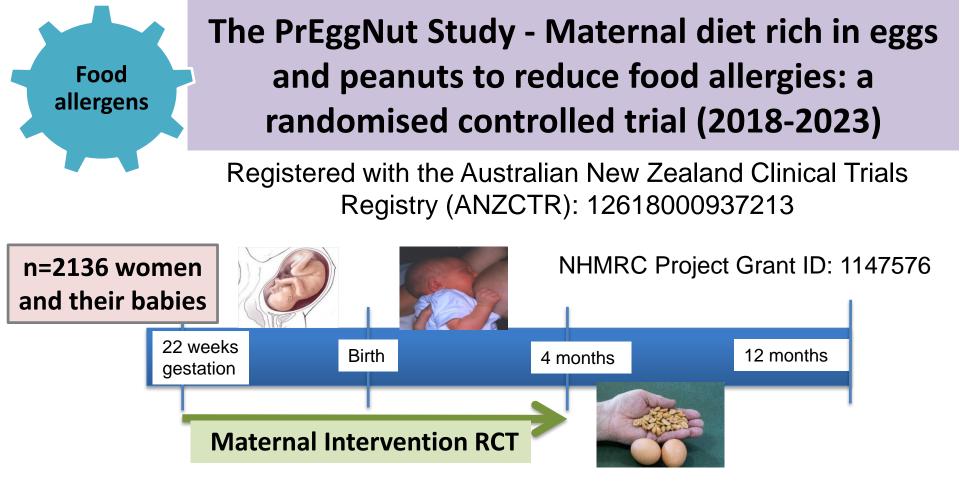
Palmer *et al*, 2017 J Allergy Clin Immunol

STAR Trial

Palmer *et al*, 2013 J Allergy Clin Immunol

Confirmed allergic reactions to the <u>uncooked egg</u> powder

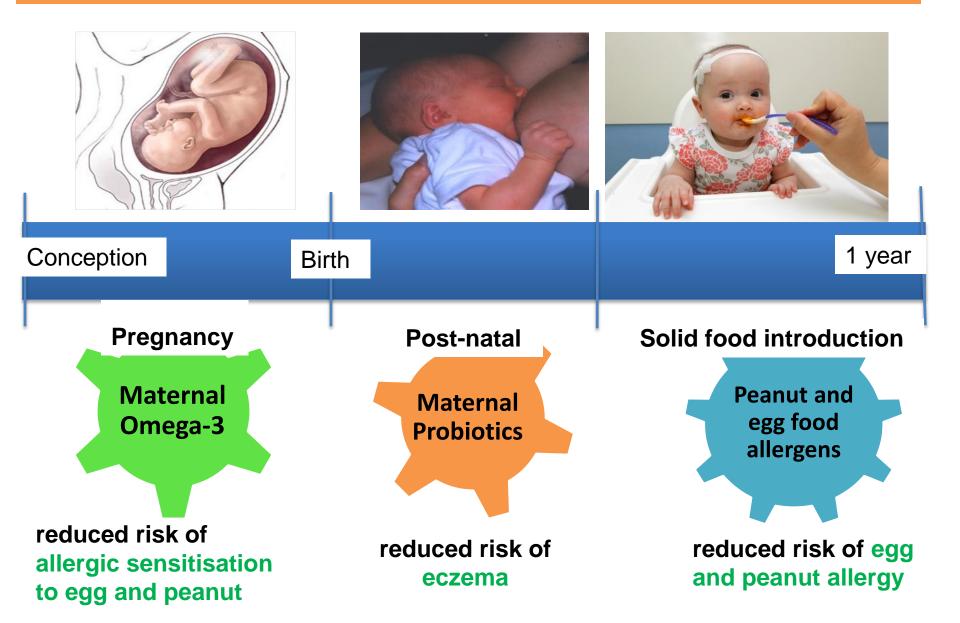
STEP Trial (no eczer	<u>ma):</u>		STAR Trial (eczema):			
6% (25/407) egg gro Urticaria, facial/lip sw and vomiting no anaphylactic rea	velling		 31% (15/49) egg group Urticaria, facial/lip swelling and vomiting 1 anaphylactic reaction 			
Egg-specific IgE level 5% (18/357) - >0.35 7.5% (27/357) - 0.1-0.35	Sensitize prior known i of egg		any gestion	Egg-specific IgE level 36% (24/67) - >0.35 12% (8/67) - 0.1-0.35		


foods

What Next?

Is introduction of food allergens in solid foods early enough – what about regular exposure during pregnancy and breastfeeding?

<u>Aim</u>: to investigate higher regular egg and peanut maternal dietary intakes during pregnancy and lactation as a strategy for infant egg and peanut allergy prevention.


<u>Primary outcome</u>: IgE mediated egg and/or peanut allergy at 1 year.

PrEggNut study website is www.telethonkids.org.au/PrEggNut

Questions remain with regard to maternal and infant diets and allergy prevention strategies

In summary: evidence to date

