
Integrated gluten management – gluten testing along the food production chain

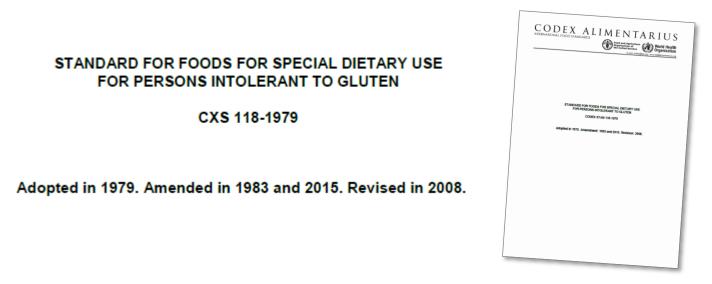
FAMS, Sydney 20th – 22nd of May 2025, Dr. Sigrid Haas-Lauterbach, R-Biopharm AG, Germany

- The global prevalence of celiac disease is approx. 0.7% - 1.4% (Clin. Gastroenterol Hepatol. 2018 Jun;16(6):823-836)
- For celiac disease patients avoidance of gluten is the only option
- Other patients show a non-celiac gluten/wheat sensitivity (NCGWS) probably mediated by innate immunity

r-biopharm

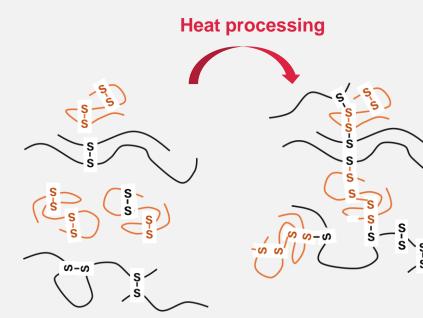
- Some people just feel better when avoiding gluten or even for lifestyle reasons
- Hence, the number of consumers following a gluten-free diet is remarkably high (e.g. 25% in the USA)
- The gluten-free products market is still booming with a CAGR of 8% 9% (2024 2032) (CAGR=Compound Annual Growth Rate)

Irrespective of the customer target group, legislation does apply


- Codex Stan 118-1979 defines "gluten-free" (i.e. ≤ 20 mg/kg)
- "Commission Implementing Regulation (EU) 828/2014" defines "gluten- free" (i.e. ≤ 20 mg/kg) and "very low gluten" (i.e. ≤ 100 mg/kg)
 - → This also applies to non-pre-packed food (e.g. restaurants)
- Gluten-free Certification (like by AOECS "crossed grain logo")
- U.S. FDA Final Rule for the (voluntary) use of "gluten-free" if a product contains ≤ 20 mg/kg gluten

- FSANZ (Food Standards Australia New Zealand), the "gluten free claim" means no detectable gluten (LOD 1-3 mg/kg (ppm), LOQ approx. 5 mg/kg (ppm)
- Food products in Australia may be labelled as "low gluten content" if the amount of gluten is below 200 (!) mg/kg

Gluten analysis in Codex Alimentarius



- Gluten-free foods are dietary foods in which the gluten level does not exceed 20 mg/kg
- Gluten is a protein fraction from wheat, rye, barley, *oats* that is insoluble in water and 0.5M NaCl
- Prolamins are defined as the fraction from gluten that can be extracted by 40 70% of ethanol
- The prolamin content of gluten is generally taken as 50%

Food processing influences gluten analysis

Gliadins/Prolamins Glutenins/Glutelins Complexed, insoluble gluten proteins

Development of a general procedure for complete extraction of gliadins for heat processed and unheated foods

Enrique García^a, Mercedes Llorente^a, Alberto Hernando^a, Rolf Kieffer^b, Herbert Wieser^b and Enrique Méndez^a

European Journal of Gastroenterology & Hepatology 2005, 17:529-539

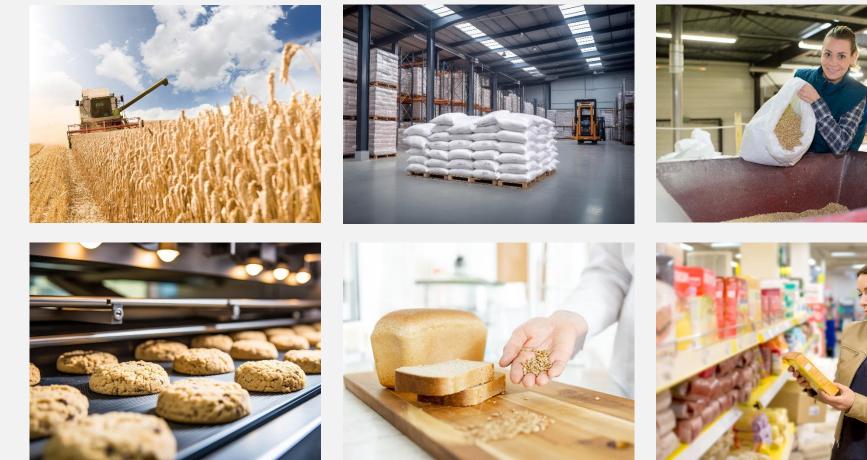
- Heat processing of gluten leads to formation of intermolecular disulfide bonds
- Simple ethanol extraction is not sufficient
- Disulfide bond breaking reagent is needed for extraction

Codex Alimentarius Type I Method for gluten in foods

Standard CXS 234-1999 (adoption from 2019)

R5 ELISA

e.g. RIDASCREEN® Gliadin


Méndez Cocktail

for gluten extraction from heat-processed foods →Cocktail (patented)

			PCR	LC-MS
Qualitative results	✓ ✓	→	√	\checkmark
Quantitative results	\checkmark	\checkmark	(√)	(√)
Sensitivity	High	High; LOQ app. 3 mg/kg	High, based on DNA content	Very High; LOQ app. 0,03 mg/kg
Specificity	Specific for gluten from wheat, rye, and barley together	Specific for gluten from wheat, rye, and barley together	Differentiates individual gluten-containing cereals	Differentiates individual gluten- containing cereals
Target	Prolamin from wheat, rye, and barley	Prolamin from wheat, rye, and barley	Specific DNA sequences	Specific gluten peptides
Fast results	$\checkmark\checkmark$	\checkmark	7	\rightarrow
Multiplexing	\rightarrow	\rightarrow	\checkmark	\checkmark
Automation	\rightarrow	\checkmark	\checkmark	\checkmark
Lab equipment	Ļ	7	\checkmark	\checkmark
Requirements for staff training	ţ	7	\checkmark	\checkmark
Device costs	Ļ	7	7	\checkmark

Critical points in gluten management along the food production chain

Risks:

- Contamination of naturally gluten-free grains and pseudograins e.g. polenta, rice, wild rice, millet, golden millet, brown millet, teff, amaranth, buckwheat, cassava, flaxseed, quinoa, or tapioca
- Contamination due to gluten-containing cereals on adjacent fields
- Cross-contamination during harvest, transportation, storage, packaging materials or contaminated equipment
- Crop rotation e.g. maize and winter wheat

Requirements for analysis:

- Fast results to make decisions
- Robust and simple method to performe on-site
- Qualitative or quantitative results
- → Qualitative or quantitative LFD

Grain harvest and processing

- Harvest, transport, milling of gluten-free commodities
- Detection of contamination

Simple equipment needed

Data management

- Supplier management and qualification
- Cross-contamination sources identification (ingredients, packaging materials, processing aids, non-food chemicals, etc.)
- Risk assessment for incoming materials
- Management of production schedule
- Raw material management (cleaning, mixing etc.)
- Decision making which materials are used

Requirements for analysis:

- Fast results
- Reliable and validated method to performe on-site or in-house laboratory
- Quantitative results
- → ELISA or quantitative LFD

Ingredient management

Supplier management Ingredients' handling Prevention of cross-contamination

Supplier audits

Incoming goods control

Storage management

Data management

- Release of production plant (check productions site and environment before production start for cross contamination)
- Validation of cleaning procedure
- Routine check during cleaning procedure
- Follow up HACCP, identification of critical control points, CIP Water

Requirements for analysis:

- Fast results
- Robust, simple and validated method
- Qualitative or quantitative results
- → Qualitative or quantitative LFD or ELISA

Inline control production

- Cross-contamination
 during production
- Cleaning control

Cleaning process validation

On-site testing

Hygiene monitoring between production processes

- Correct determination of gluten from different sources
- Blending of different oat lots
- High risk of contamination
- when oats are cultivated on fields where previously wheat, rye or barley was grown
- when wheat, rye or barley is grown on neighboring fields
- when oats are stored in silos together with other cereals
- when oats are ground in mills where other cereals are milled
- when equipment used for harvesting, transport, production or packaging is also used for other cereals

Requirements for analysis:

- Reliable and validated methods for detection of gluten in oats and oats products
- Qualitative or quantitative results

→ ELISA (quant.) for gluten in oats, PCR (qual.)

Oats industry

Challenges due to different gluten sources (wheat, rye, barley)

Different gluten composition in wheat, rye, and barley

Homogeneity issues

Identify the potential source of contamination

- Product release as gluten free
- Consumer safety according to regulation
- Comply with different regulations and action levels
- Reference and confirmation methods
- Choice of correct method and sample preparation (e.g. highly processed, baked, hydrolysed, fermented...
- Choose the correct method (LC-MS, PCR, ELISA)
- If ELISA is used choose correct assay format (sandwich or competitive)

Requirements for analysis:

- Reliable and validated methods (Codex and/or AOAC)
- Quantitative results
- → LC-MS, ELISA, PCR, quant. LFD

End product testing Labelling and consumer information

Product Quality Consumer Safety

Degree of processing (e.g. hydrolysis)

Interferences with matrix components

Extraction efficiency and recovery

Gluten-free labelling

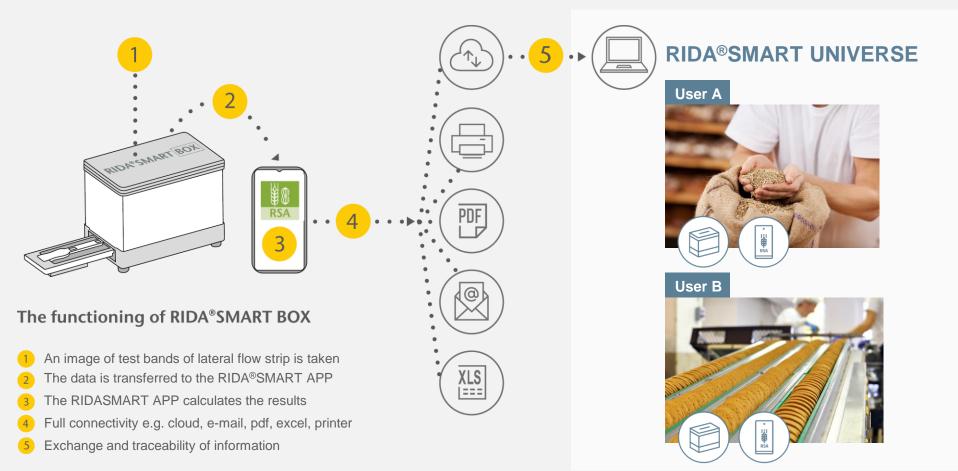
Different regulations and action levels

Methods in allergen and gluten management

Widely used methods

... designed for an integrated gluten management along the food production chain

- RIDA[®]QUICK Gluten quant. New AOAC approval in preparation
- RIDA[®]QUICK Gliadin AOAC-OMA 2015.16 AOAC-PTM 101702



- RIDASCREEN® Gliadin AOAC-OMA 2012.01 AOAC-PTM 120601
- RIDASCREEN®EASY Gluten New AOAC approval in preparation
- RIDASCREEN® Total Gluten AOAC-OMA 2018.15
- RIDASCREEN[®] Gliadin competitive AOAC-OMA 2015.05
- RIDASCREEN® Gliadin sensitive

SureFood
 ALLERGEN Gluten

Integrated gluten data management – new approach

- > Understand the whole process from raw material to finished product
- Define why it is important to test at the single control points, e.g. descion for raw material, control cleaning process...
- Define which type of sample will be tested in this particular step, e.g. hydrolysed, baked, milled samples etc...
- > Decide whether a qualitative or quantitative result is needed at a certain control point
- Decide whether a fast result or a result giving more information e.g. the amount of contamination or about the source of the contamination is needed
- Choose the method according to the individual requirements at the specific control point, e.g. method for oats and oats products or hydrolysed samples
- Choose the right format of the method, e.g. for ELISA sandwich (intact or aggregated molecule) or competitive (protein fragments)
- > Check the valiadation data of the method to make sure that it works for your type of sample

Thank you for your attention!

More about R-Biopharm Food & Feed Analysis

https://r-b.io/food

R-Biopharm • An der neuen Bergstraße 17, 64297 Darmstadt, Germany • E-mail: info@r-biopharm.de • food.r-biopharm.com